1,416 research outputs found

    A 2D Chaotic Oscillator for Analog IC

    Get PDF
    In this paper, we have proposed the design of an analog two-dimensional (2D) discrete-time chaotic oscillator. 2D chaotic systems are studied because of their more complex chaotic behavior compared to one-dimensional (1D) chaotic systems. The already published works on 2D chaotic systems are mainly focused either on the complex analytical combinations of familiar 1D chaotic maps such as Sine map, Logistic map, Tent map, and so on, or off-the-shelf component-based analog circuits. Due to complex hardware requirements, neither of them is feasible for hardware-efficient integrated circuit (IC) implementations. To the best of our knowledge, this proposed work is the first-ever report of an analog 2D discrete-time chaotic oscillator design that is suitable for hardware-constrained IC implementations. The chaotic performance of the proposed design is analyzed with bifurcation plots, the transient response, 2D Lyapunov exponent, and correlation coefficient measurements. It is demonstrated that the proposed design exhibits promising chaotic behavior with low hardware cost. The real-world application of the proposed 2D chaotic oscillator is presented in a random number generator (RNG) design. The applicability of the RNG in cryptography is verified by passing the generated random sequence through four standard statistical tests namely, NIST, FIPS, TestU01, and Diehard

    The Casimir Effect for Parallel Plates Revisited

    Full text link
    The Casimir effect for a massless scalar field with Dirichlet and periodic boundary conditions (b.c.) on infinite parallel plates is revisited in the local quantum field theory (lqft) framework introduced by B.Kay. The model displays a number of more realistic features than the ones he treated. In addition to local observables, as the energy density, we propose to consider intensive variables, such as the energy per unit area ϵ\epsilon, as fundamental observables. Adopting this view, lqft rejects Dirichlet (the same result may be proved for Neumann or mixed) b.c., and accepts periodic b.c.: in the former case ϵ\epsilon diverges, in the latter it is finite, as is shown by an expression for the local energy density obtained from lqft through the use of the Poisson summation formula. Another way to see this uses methods from the Euler summation formula: in the proof of regularization independence of the energy per unit area, a regularization-dependent surface term arises upon use of Dirichlet b.c. but not periodic b.c.. For the conformally invariant scalar quantum field, this surface term is absent, due to the condition of zero trace of the energy momentum tensor, as remarked by B.De Witt. The latter property does not hold in tha application to the dark energy problem in Cosmology, in which we argue that periodic b.c. might play a distinguished role.Comment: 25 pages, no figures, late

    New directions for the treatment of adrenal insufficiency

    Get PDF
    The following funding bodies supported this work: Biotechnology and Biological Sciences Research Council (BBSRC BB/L00267/1, to LG), Rosetrees Trust (to LG), Barts and The London Charity (417/2235, to LG), EU COFUND (PCOFUND-GA-2013-608765, to LG and GRB). IH is supported by a Medical Research Council (MRC, G0802796) PhD studentship

    FGF signalling through RAS/MAPK and PI3K pathways regulates cell movement and gene expression in the chicken primitive streak without affecting E-cadherin expression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>FGF signalling regulates numerous aspects of early embryo development. During gastrulation in amniotes, epiblast cells undergo an epithelial to mesenchymal transition (EMT) in the primitive streak to form the mesoderm and endoderm. In mice lacking FGFR1, epiblast cells in the primitive streak fail to downregulate E-cadherin and undergo EMT, and cell migration is inhibited. This study investigated how FGF signalling regulates cell movement and gene expression in the primitive streak of chicken embryos.</p> <p>Results</p> <p>We find that pharmacological inhibition of FGFR activity blocks migration of cells through the primitive streak of chicken embryos without apparent alterations in the level or intracellular localization of E-cadherin. E-cadherin protein is localized to the periphery of epiblast, primitive streak and some mesodermal cells. FGFR inhibition leads to downregulation of a large number of regulatory genes in the preingression epiblast adjacent to the primitive streak, the primitive streak and the newly formed mesoderm. This includes members of the FGF, NOTCH, EPH, PDGF, and canonical and non-canonical WNT pathways, negative modulators of these pathways, and a large number of transcriptional regulatory genes. <it>SNAI2 </it>expression in the primitive streak and mesoderm is not altered by FGFR inhibition, but is downregulated only in the preingression epiblast region with no significant effect on E-cadherin. Furthermore, over expression of SNAIL has no discernable effect on E-cadherin protein levels or localization in epiblast, primitive streak or mesodermal cells. FGFR activity modulates distinct downstream pathways including RAS/MAPK and PI3K/AKT. Pharmacological inhibition of MEK or AKT indicate that these downstream effectors control discrete and overlapping groups of genes during gastrulation. FGFR activity regulates components of several pathways known to be required for cell migration through the streak or in the mesoderm, including RHOA, the non-canonical WNT pathway, PDGF signalling and the cell adhesion protein N-cadherin.</p> <p>Conclusions</p> <p>In chicken embryos, FGF signalling regulates cell movement through the primitive streak by mechanisms that appear to be independent of changes in E-cadherin expression or protein localization. The positive and negative effects on large groups of genes by pharmacological inhibition of FGF signalling, including major signalling pathways and transcription factor families, indicates that the FGF pathway is a focal point of regulation during gastrulation in chicken.</p

    Urinary proteomic profiling in severe obesity and obstructive sleep apnoea with CPAP treatment.

    Get PDF
    INTRODUCTION: Obstructive sleep apnoea (OSA) is common in obesity and is associated with cardiovascular and metabolic complications. Continuous positive airway pressure (CPAP) in OSA may lead to physiological changes reflected in the urinary proteome. The aim of this study was to characterise the urinary proteome in severely obese adult subjects with OSA who were receiving CPAP compared with severely obese subjects without OSA. METHODS: Severely obese subjects with and without OSA were recruited. Subjects with OSA were receiving CPAP. Body composition and blood pressure measurements were recorded. Urinary samples were analysed by Capillary Electrophoresis-Mass Spectrometry (CE-MS). RESULTS: Twenty-seven subjects with OSA-on-CPAP (age 49±7years, BMI 43±7 kg/m(2)) and 25 controls without OSA (age 52±9years, BMI 39±4 kg/m(2)) were studied. Age and BMI were not significantly different between groups. Mean CPAP use for OSA patients was 14.5±1.0 months. Metabolic syndrome was present in 14(52%) of those with OSA compared with 6(24%) of controls (p=0.039). A urinary proteome comprising 15 peptides was identified showing differential expression between the groups (p<0.01). Although correction for multiple testing did not reach significance, sequences were determined for 8 peptides demonstrating origins from collagens, fibrinogen beta chain and T-cadherin that may be associated with underlying cardiovascular disease mechanisms in OSA. CONCLUSIONS: The urinary proteome is compared in OSA with CPAP and without OSA in severe obesity. The effects of CPAP on OSA may lead to changes in the urinary peptides but further research work is needed to investigate the potential role for urinary proteomics in characterising urinary peptide profiles in OSA

    A methodology for creating building energy model occupancy schedules using personal location metadata

    Get PDF
    Occupants affect energy consumption in buildings by contributing internal heat gains, increasing internal carbon dioxide levels and adapting their behaviour. Estimated occupancy schedules are used in building energy models for regulatory compliance purposes and when empirical data are not available. Metadata, such as personal location data, is now collected and visualised on a global scale and can be used to create more realistic occupancy schedules for non-domestic facilities, such as large retail outlets. This paper describes a protocol for extracting and using freely available metadata to create occupancy schedules that are used as inputs for dynamic simulation models. A sample set of twenty supermarket building models are used to demonstrate the impact metadata schedules have when compared with models using the estimated schedules from regulatory compliance. Metadata can be used to create bespoke occupancy profiles for specific buildings, groups of buildings and building archetypes. This method could also help reduce the gap between predicted and actual performance. In the example models, those using the regulatory compliance schedules underestimated heating demand by approximately 10% and overestimated cooling demand by over 50% when compared to models using the metadata schedules. Although this work focuses on UK facilities, this methodology has scope for global application
    corecore